Does Size Matter? Atmospheric CO2 May Be a Stronger Driver of Stomatal Closing Rate Than Stomatal Size in Taxa That Diversified under Low CO2

نویسندگان

  • Caroline Elliott-Kingston
  • Matthew Haworth
  • Jon M. Yearsley
  • Sven P. Batke
  • Tracy Lawson
  • Jennifer C. McElwain
چکیده

One strategy for plants to optimize stomatal function is to open and close their stomata quickly in response to environmental signals. It is generally assumed that small stomata can alter aperture faster than large stomata. We tested the hypothesis that species with small stomata close faster than species with larger stomata in response to darkness by comparing rate of stomatal closure across an evolutionary range of species including ferns, cycads, conifers, and angiosperms under controlled ambient conditions (380 ppm CO2; 20.9% O2). The two species with fastest half-closure time and the two species with slowest half-closure time had large stomata while the remaining three species had small stomata, implying that closing rate was not correlated with stomatal size in these species. Neither was response time correlated with stomatal density, phylogeny, functional group, or life strategy. Our results suggest that past atmospheric CO2 concentration during time of taxa diversification may influence stomatal response time. We show that species which last diversified under low or declining atmospheric CO2 concentration close stomata faster than species that last diversified in a high CO2 world. Low atmospheric [CO2] during taxa diversification may have placed a selection pressure on plants to accelerate stomatal closing to maintain adequate internal CO2 and optimize water use efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired Stomatal Control Is Associated with Reduced Photosynthetic Physiology in Crop Species Grown at Elevated [CO2]

Physiological control of stomatal conductance (Gs) permits plants to balance CO2-uptake for photosynthesis (PN) against water-loss, so optimizing water use efficiency (WUE). An increase in the atmospheric concentration of carbon dioxide ([CO2]) will result in a stimulation of PN and reduction of Gs in many plants, enhancing carbon gain while reducing water-loss. It has also been hypothesized th...

متن کامل

An investigation on the possibility of use of chlorophyll fluorescence to study the stomatal behaviour in plants under drought stress

Stomata play a key role in the control of plant water relations and photosynthesis. A rapid non-destructive method to study the stomatal behaviour in aerial parts of plants is important for researchers in plant sciences and agricultural fields. Stomata close in response to drought stress. Stomatal closure causes lower availability of CO2 inside the leaf and thus a decrease in the rate of carbox...

متن کامل

New Approaches to the Biology of Stomatal Guard Cells

CO2 acts as an environmental signal that regulates stomatal movements. High CO2 concentrations reduce stomatal aperture, whereas low concentrations trigger stomatal opening. In contrast to our advanced understanding of light and drought stress responses in guard cells, the molecular mechanisms underlying stomatal CO2 sensing and signaling are largely unknown. Leaf temperature provides a conveni...

متن کامل

Atmospheric CO2 Alters Resistance of Arabidopsis to Pseudomonas syringae by Affecting Abscisic Acid Accumulation and Stomatal Responsiveness to Coronatine

Atmospheric CO2 influences plant growth and stomatal aperture. Effects of high or low CO2 levels on plant disease resistance are less well understood. Here, resistance of Arabidopsis thaliana against the foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) was investigated at three different CO2 levels: high (800 ppm), ambient (450 ppm), and low (150 ppm). Under all conditions tested, i...

متن کامل

Stomatal control as a driver of plant evolution.

Stomata are the pores on a leaf surface through which plants regulate the uptake of carbon dioxide (CO2) for photosynthesis against the loss of water via transpiration. Turgor changes in the guard cells determine the area of stomatal pore through which gaseous diffusion can occur, thus maintaining a constant internal environment within the leaf (Gregory et al., 1950). Stomata first occurred in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016